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Optical phenomena visible to everyone have been central to the development of, and abundantly illustrate, important
concepts in science and mathematics. The phenomena considered from this viewpoint are rainbows, sparkling reflections
on water, mirages, green flashes, earthlight on the moon, glories, daylight, crystals and the squint moon. And the con-
cepts involved include refraction, caustics (focal singularities of ray optics), wave interference, numerical experiments,
mathematical asymptotics, dispersion, complex angular momentum (Regge poles), polarisation singularities, Hamilton’s
conical intersections of eigenvalues (‘Dirac points’), geometric phases and visual illusions.
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1. Introduction

Natural optical phenomena have been the subject of many
studies over many centuries, and have been described
many times in the technical [1,2] and popular [3–5] litera-
ture. Yet another general presentation would be superflu-
ous. Instead, as my way of celebrating the International
Year of Light, this article will have a particular intellectual
emphasis: to bring out connections between what can be
seen with the unaided, or almost unaided, eye and general
explanatory concepts in optics and more widely in physics
and mathematics – to uncover the arcane in the mundane.
In addition, I will make some previously unpublished
observations concerning several curious optical effects.

Each section will describe a particular phenomenon,
or class of phenomena, which I try to present in the sim-
plest way compatible with my theme of underlying con-
cepts. The sections are almost independent and can be
read separately.

A disclaimer: The historical elements in what follows
should not be interpreted as scientific history as practised
by professionals, where it is usual to study the contribu-
tions of scientists in the light of the times in which they
lived. My approach is different: to consider the past in
the light of what we know today – for the simple reason
that the scientific contributions we remember are those
that have turned out to be fruitful in later years or even
(as we will see) later centuries. The significance of the
past changes over time.

2. Rainbows: the power of numerical experiments

Figure 1 is Roy Bishop’s photograph of a primary rain-
bow accompanied by a faint secondary bow. It is iconic

because the house in the picture is Isaac Newton’s birth-
place and it was Newton who gave the first explanation
of the rainbow’s colours [6]. We will see later why the
picture is ironic as well as iconic.

To a physicist, the colours are a secondary feature,
associated mainly with the dependence of refractive
index of water on wavelength (optical dispersion). More
fundamental is the very existence of a bright arc in the
sky. This had been explained by Descartes in 1638 [7].
To calculate the paths of light rays (Figure 2(a)) refracted
into and out of a raindrop, with one reflection inside, he
used the law of refraction that he probably discovered
independently, though we associate it with Snel, who
knew it already (and it was known to Harriot several
decades before, and to Ibn Sahl half a millennium earlier
[8]).

Nowadays, we would use elementary trigonometry to
find the deviation D of a ray incident on the drop with
impact parameter x, if the refractive index is n:

D xð Þ ¼ p$ 4sin$1 x
n
$ 2sin$1x

! "
: (1)

The calculation reveals a minimum deviation (Figure 2(b))
given by

dD
dx

¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ x2
p

$ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 $ x2
p! "

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ x2ð Þ n2 $ x2ð Þ

p ¼ 0

for x ¼ xmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4$ n2

3

r
;

(2)

corresponding to the deviation of the rainbow ray,
namely
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Dmin ¼ D xminð Þ ¼ 2 cos$1 4$ n2ð Þ3=2

33=2n2

 !

¼ 180% $ 42:03% for n ¼ 4
3
: (3)

Descartes proceeded differently. Our facility with
trigonometric calculations was not available in his time;
instead, he used a geometric version of Snel’s law to
compute the rays laboriously, one by one. As we would
say now, he performed a numerical experiment. The dots
in Figure 2(b) correspond to the rays he calculated [7].

But why should the rainbow ray, emerging at Dmin,
be bright? What about the other, more deviated, rays, illu-
minating the sky inside the bow? Descartes understood
that although the drop is lit uniformly in x, the rays
emerge non-uniformly in D. In particular, rays incident in
an interval dx near xmin emerge concentrated into a range
dD = 0. This is angular focusing: a lot goes into a little.
The rays emerge as a directional caustic. The rainbow
caustic is a bright cone emerging from each droplet; and
we, looking up at the rain, see, brightly lit, in the form of
an arc, all the drops on whose cones our eyes lie. We will
encounter the concept of a caustic repeatedly in later sec-
tions of this paper; it denotes the envelope of a family of
rays, that is the focal line or surface touched by each
member of the family. A caustic is a holistic property of
a ray family, not inherent in any individual ray. Caustics
are the singularities of geometrical optics [9].

The intensity I corresponding to deviation D, given
by equating the light entering in an annulus around x
and emerging in a solid angle around D, is

2p sinDdDj jI / 2pxj jdx; i.e. I / x
sinD

dD
dx

$ %$1
&&&&&

&&&&&: (4)

This diverges at the rainbow angle (3), predicting, on
this geometrical-optics picture, infinite intensity where
dD/dx = 0. The singularity would be softened by the
1/2° width of the sun’s disc and the colour dispersion.

Now look more closely at Figure 1, and notice the
bright line just inside the main arc. This supernumerary
bow did not fit into the Newton–Descartes scheme, and
there seems no evidence that Newton noticed it (the term
‘supernumerary means ‘surplus to requirements’, i.e.
‘unwanted’). The explanation had to wait for nearly a
century, when Young [10–12] pointed out, as an example
of his wave theory of light, that supernumerary bows are
interference fringes, resulting from the superposition of
the waves associated with the two rays that emerge in
each direction D away from the minimum. It is remark-
able that just by looking up in the sky at this fine detail
(visible in about half of natural rainbows), one sees
directly the replacement of the theory of light in terms of
rays – geometrical optics – by the deeper and more

(a)

(b)
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Figure 2. (a) Rays in a raindrop; showing the minimum
deviation (rainbow) ray. (b) Ray deflection function, with dots
indicating the points calculated by Descartes.

Figure 1. Rainbow over Isaac Newton’s birthplace, showing
the primary bow decorated by a supernumerary bow, and a faint
secondary bow. Reproduced by kind permission of Professor
Roy Bishop.
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fundamental wave theory. This is the irony of Figure 1:
interference fringes, that Newton could not explain, hov-
ering over his house, as if in mockery.

Young understood that his two-wave picture could
not be a precise description of the light near a rainbow
because the intensity would still diverge at the rainbow
angle, and he had the insight that – using modern termi-
nology – a wave should be described by a smooth wave
function. It took nearly 40 years for Airy [13] to provide
the definitive formula for the smooth wave function near
a caustic. He calculated that the intensity (Figure 3(a)) is
the square of an integral, now named after him:

Ai xð Þ ¼ 1
p

Z1

0

dt cos
1
3
t3 þ xt

$ %
: (5)

For light wavelength λ and a drop with radius a, the
‘rainbow-crossing variable’ x is [14]

x ¼ Dmin $ Dð Þ 4pa
3k

$ %2=3 ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 $ 1
p

4$ n2ð Þ1=6
: (6)

Airy realised that Ai(x) describes the wave close to any
caustic, not just that associated with a rainbow.

Notwithstanding repeated attempts to understand (5),
Airy did ‘not succeed in reducing it to any known inte-
gral’. Therefore, he resorted to what Descartes had done
two centuries before and what we continue to do today
when faced with a mathematically intractable theory. He
performed a numerical experiment: evaluating the integral
by approximate summation of the integrand in increments
dt – a far from trivial task given the oscillatory nature
and slow convergence. The result was that he could cal-
culate Ai(x) over the range |x| < 3.748 shown shaded on
Figure 3(a) [13], including just two peaks of Ai2(x).

This restriction to barely two intensity maxima was
frustrating, because 30 supernumerary fringes had been
observed in laboratory experiments with transparent
spheres. What was lacking was the asymptotics of Ai(x):
a precise description of the oscillations for x ' $1 and
the decay into the geometrically forbidden region
x ( þ1. This was supplied 10 years later by Stokes
[15], who showed that (Figure 3(b))

cos 2
3 $xð Þ3=2 þ 1

4 p
! "

ffiffiffi
p
p

$xð Þ1=4
 

x'$1
Ai xð Þ  

x(1

exp $ 2
3 x

3=2
' (

2
ffiffiffi
p
p

x1=4
: (7)

Stokes’s paper was technically remarkable; using the
differential equation satisfied by Ai(x), he ‘pre-invented’
what later came to be known as the WKB method and,
to identify certain constants, he anticipated the method
of stationary phase for oscillatory integrals. But his
insight was far deeper, leading him to identify a diffi-
culty and contribute to its solution, in a way that has
proved central to contemporary mathematics.

The asymptotics (7) shows that for x ≫ +1, Ai(x)
is described by one exponential function, while for
x ≪ −1, there are two exponentials (because cosθ = (exp
(iθ) + exp(−iθ))/2). One of these is the analytic continua-
tion, through complex z = x + iy, of the exponential for
x ≫ +1. But where did the other come from? The key
was identified by Stokes a further decade later [16,17]:
the exponentials in (7) are the first terms in formally
exact expressions as divergent infinite series. For Re
(z) ≫ +1, i.e. on the dark side, the series is

Ai zð Þ ¼
exp $ 2

3 z
3=2

' (

2
ffiffiffi
p
p

z1=4
X1

n¼0

$1ð Þn
n$ 1

6

' (
! n$ 5

6

' (
!

2pn! 4
3 z

3=2
' (n : (8)

The divergence arises from the factorials: two in the
numerator dominating one in the denominator. Neverthe-
less, for large z, the terms start by getting smaller, mak-
ing the series practical for accurate numerical evaluation.

Stokes thought that the greatest accuracy is obtained
by truncating the series at the least term (after which, the
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Figure 3. (a) Airy function intensity, with shading indicating
the range that Airy computed by numerical integration. (b) Red
curve: Airy intensity; black curve: geometrical optics approxi-
mation; dotted curve: Young’s interfering ray approximation;
Dashed curve: lowest-order Stokes asymptotics.
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series starts to diverge), leaving a small remainder repre-
senting an irreducible vagueness in the representation of
Ai(z) by the series. In a path in the upper z half-plane
from z positive real to negative real (Figure 4), the small
exponential on the right of (7) becomes exponentially
large when argz = 120°. Near this ‘Stokes line’, the sec-
ond exponential on the left of (7) is exponentially small
– smaller, indeed, than the remainder of the truncated
series, allowing it to enter Ai(z) unnoticed and then to
grow into the previously problematic oscillatory second
exponential for z negative real, giving the cosine interfer-
ence fringes on the bright side of the rainbow.

Although Stokes was wrong in thinking that the
accuracy of factorially divergent series is limited by the
smallest term, his Stokes lines appear in a wide variety
of functions and are seminal to our modern understand-
ing of divergent series. We now know [18–21] that the
second exponential is born from the resummed divergent
tail of the series multiplying the first exponential, and in
a manner that is the same for all factorially divergent
series. This universality, first emphasised by Dingle [22],
enables repeated resummation and computation of func-
tions with unprecedented accuracy [23,24]. The associ-
ated technicalities are now being applied in quantum
field theory and string theory [25].

We see that understanding the rainbow has been an
intellectual thread linking numerical experimentation,
evidence for wave optics superseding ray optics and the
mathematics of divergent series.

This far from exhausts the physics associated with
the rainbow. The λ dependence of the rainbow Airy
argument (6) contributes diffraction colours [26] in addi-
tion to the dispersion colours explained by Newton [7].
The electromagnetic vector nature of light explains subtle
polarisation detail [14]. The function Ai(x), that in its
original form, e.g. with the variable (6), describes only
the close neighbourhood of a caustic, can be stretched to
provide a uniform approximation [27–29] extending the
accuracy to regions far from the caustic. Analogues of
rainbow scattering occurs in quantum [28,30,31] and

condensed matter [32] physics. Finally, Ai(x) is now
understood as the simplest member of a hierarchy of dif-
fraction catastrophes [9,33,34], describing waves near
caustics of increasing geometrical complexity.

3. Sparkling seas: twinkling and lifelong fidelity

Figure 5 shows images of the sun reflected by wavy
water. The images we see correspond to places where
the water surface is sloped to reflect light into our eye.
As the waves move and the shape of the surface
changes, the images move too. They appear and disap-
pear in pairs. Such events, called ‘twinkles’, correspond
to caustic surfaces (Figure 6(a)) in the air above the
water, passing through the eye. The succession of twin-
kles, often too rapid for us to follow in detail, gives rise
to the sparkling appearance of the water. The intricate
topology of the reflections and the coalescence events,
and the associated statistics for waves represented by
Gaussian random functions were studied in pioneering
papers by Longuet-Higgins [35–37]. The techniques he
developed were applied to the statistics of caustics [9]
and extended to describe phase [38] and polarisation sin-
gularities [39] in random waves.

Here, I draw attention to a statistical problem hinted
at by Longuet-Higgins [35,37] but still unsolved. Each
specular point is born accompanied by a partner, prompt-
ing this question: For a random moving water surface,
what fraction R of specular points dies by annihilation
with the partner it was born with? This property can be
called ‘lifelong fidelity’. The fraction R is different for
different types of randomness. It seems a hard problem
even for the simple case of isotropic monochromatic

Stokes line
z plane

one exponential

two
exponentials

x=Rez
dark sidebright side

Figure 4. Complex plane of Ai(z), with the Stokes line across
which the second exponential is born.

Figure 5. Images of the sun (specular points) sparkling on the
water in Bristol docks.
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Gaussian randomness, because it requires statistics non-
local in both space and time.

To get a little insight, I illustrate the problem by con-
sidering the simpler case of a corrugated water surface
generating a reflected wavefront with height f(x) depend-
ing on a single variable x (the height of the water surface
is proportional to f(x)). For the eye located at (xe, h), the
optical path distance from a point x on the water surface
is (for surfaces with gentle slopes),

U x; xe; h; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h$ f x; tð Þð Þ2 þ x$ xeð Þ2

q

) h$ f x; tð Þ þ x$ xeð Þ2

2h
: (9)

The specular points xn, i.e. the rays, are the paths for
which this function is stationary:

rays:
@xU ¼ 0) x$ hf 0 x; tð Þ ¼ xe ) x ¼ xn xe; h; tð Þf g:

(10)

Therefore, the moving images are represented by the
locus

x$ hf 0 x; tð Þ ¼ xe (11)

in the (x, t) plane. The caustics at time t are the curves

@2
xU ¼ 0) z ¼ 1

f 00 x; tð Þ
) z xe; h; tð Þ: (12)

To illustrate lifelong fidelity, or lack of it, I start with
a stationary surface given by a random superposition of
N sinusoids:

f0 xð Þ ¼
XN

n¼0

cos knxþ /nð Þ: (13)

Figure 6(a) illustrates the caustics for a sample function
of this type, with N = 5. If the water moves rigidly, rep-
resented by

f1 x; tð Þ ¼ f0 x$ tð Þ; (14)

then the caustics translate rigidly sideways and it is
obvious that there is no lifelong fidelity (Figure 6(b)).
Non-rigid motion can be represented by two interfering
oppositely moving waves:

f2 x; tð Þ ¼ 1
2

f0 x$ tð Þ þ f0 xþ tð Þð Þ: (15)

Now, some of the caustics move back and forth or up
and down, and most images enjoy lifelong fidelity
(closed loops in Figure 6(b)); for a single sinusoid
(N = 1), all caustics in f2(x, t) move up and down and
lifelong fidelity is universal.

For the two-dimensional case, Longuet-Higgins pre-
sents a time exposure showing paths of specular points
on the water surface [35]. Some of the paths are closed
loops, but in contrast to the space–time plots in the cor-
rugated case, these do not always correspond to lifelong
fidelity. This is a rich subject for further analytical study
and numerical experiment.

4. Mirages, green flashes: light bent and dispersed
by air

Air bends light. One consequence, again involving caus-
tics in an essential way, is the mirage, most commonly
seen on a hot day when distant cars appear reflected
from the surface of a long, straight road. As is well
known [3,4,40], this is really refraction masquerading as
reflection: bending by the gradient of refractive index,
increasing from the hot road surface to the cooler air
above (Figure 7).

On the simplest theory, the index depends weakly on
height z:

n zð Þ ¼ 1þ Dn zð Þ; Dn zð Þ ' 1: (16)

From Snel’s law, the direction and curvature of a ray are
given by

n zð Þ cos h zð Þð Þ ¼ n zminð Þ) z00 xð Þ ) Dn0 zð Þ; (17)

x

z

t
f(x)

xe ,h
(a)

(b) (c)

Figure 6. (a) Reflection caustics above a water surface (13).
(b) Space–time plot of evolving images, for the rigidly moving
surface (14), with births of image pairs indicated by red dots
and deaths by green dots; (c) As (b) for the interfering waves
(15), with the loops indicating images enjoying lifelong fidelity.

6 M.V. Berry

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f B

ris
to

l] 
at

 0
7:

33
 2

4 
M

ar
ch

 2
01

5 



where zmin is the height where the ray is horizontal. For
constant index gradient, i.e. n(z) locally linear, this leads
to parabolic ray paths:

Dn zð Þ ¼ Az) z ¼ zmin þ
1
2
A x$ xminð Þ2: (18)

(A curious sidelight on history: this simple explanation
has been challenged several times over more than two
centuries, on the grounds, based on a misunderstanding
of Snel’s law, that once a ray becomes horizontal, it
could never curve upwards again [41].)

Figure 7 shows the family of ray paths from a point
source, with a more realistic index function, increasing
from 1 + Δ0 at the ground to 1 + 2Δ0 above:

Dn zð Þ ¼ D0 2$ exp $ z
L

! "! "
: (19)

The rays can be determined analytically:

x$ xmin ¼
1ffiffiffiffiffiffiffiffi
2D0
p exp $ zmin

L

! "
*

z$ zmin þ 2L log 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ exp $ z$ zmin

L

! "r$ %$ %

(20)

Each ray from the source corresponds to a different
choice of xmin and zmin determined by its initial slope.
The caustic of the family is clearly visible. It separates
eye positions below the caustic, from which the source
is invisible, from positions above, where two images can
be seen. (Some rays from the source hit the ground, giv-
ing rise to an additional boundary in Figure 7: a shadow
edge separating the two-image region above the caustic
from a one-image region higher still.)

The caustic has a further significance. Each point of
a distant object emits its own family of rays, so the com-
plete object emits a family of families of rays. With the

eye in a fixed position, the parts of the object that can
be seen, bounded below by the ‘vanishing line’, are
those whose caustics lie below the eye.

Sometimes, more than two mirage images are visible;
Figure 8(a) shows a case where there are three [3]. Such
multiple images can arise when the index is not a mono-
tonic function of height, or from undulations of the sur-
face; refractive indices with a maximum generate a duct,
where in principle any number of images can be seen. A
solvable example is

Dn zð Þ ¼ A cos z
a

' (
) z00 xð Þ ¼ $ A

a sin
z xð Þ
a

! "

zj j\ap; z 0ð Þ ¼ 0; z0 0ð Þ + h0f g;
(21)

for which, the rays, illustrated in Figure 8(b), involve
the Jacobian elliptic functions sn and am [42]:

z xð Þ ¼ 2asin$1 sn
xh0
2a

&&&&
2

ffiffiffi
A
p

h0

 !

¼ 2a am
xh0
2a

&&&&
2

ffiffiffi
A
p

h0

 !

:

(22)

For more on the topology of images, see [43,44].
Mirages involve local bending of light, with the layer

of heated air a few centimetres high and horizontal dis-
tances of a few hundred metres. On a much larger scale,
the entire atmosphere of the spherical earth can be

hot ground

two images
one image

caustic

z

x
zmin

xmin

index 1+ (z)!
increasing

Figure 7. Mirage rays (20) for the monotonic index profile
(20).

(a)

(b) z

n(z) 1 53 7

numbers of images

x

Figure 8. (a) Mirage with three images, formed by refraction
near a hot wall (adapted from W. Hillers, Phys. Z. 14 (1913),
719–723, reproduced in [3]). (b) Mirage rays (22) in a duct,
for the index profile (21) possessing a maximum.
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regarded as a lens, with index decaying to unity over a
height of a few kilometres. The resulting bending ele-
vates the image of the sun by slightly more than its own
diameter (about 1/2°), so we can see it immediately
before sunrise and after sunset, when it is just below the
horizon.

The earth-lens suffers from chromatic aberration
because the bending is weakly dispersive, with the blue
being refracted more than the red. This causes the green
image of the setting sun to be above the red image by
about 10 arcsec, giving rise to the occasionally visible
striking phenomenon of the green flash [45,46] (the blue
sunlight has been scattered to make the blue sky). Impor-
tant modifications of this basic explanation arise from the
fact that the dispersion need not be a monotonic function
of height (e.g. when there is an inversion layer) [46].

More effects of the earth-lens will be examined in
the next section.

5. Earthlight on the moon: astronomical
coincidences

There are two circumstances in which we see the moon
lit from the earth. Near new moon (Figure 9(a)), the part
of the moon’s disc that is hidden from the sun can be
seen in the pale ghostly light reflected by the earth – also
called ‘earthshine’ or ‘the old moon in the new moon’s
arms’. And in the opposite situation, during a lunar
eclipse, the moon can still be seen, even though it is
within the earth’s shadow, in light refracted onto it by

the earth’s atmosphere (Figure 9(b)). This eclipse light
corresponds to all the simultaneous sunrises and sunsets
on the earth, blood-reddened by double passage through
the atmosphere.

These two earthlights are of very different origins.
Nevertheless, casual viewing suggests that the brightness
of the earth-lit moon is roughly similar in the two cases.
In this section, I outline calculations supporting this
observation.

At new moon, the sun illuminates the disc of the earth
that faces the moon. The earth’s albedo A denotes the frac-
tion of this light that is diffusely reflected into (approxi-
mately) a hemisphere of the sky. Most of it disappears into
space, but a small fraction hits the moon. Neglecting
obliquity effects, the fraction of sunlight incident on the
earth that lights up the new moon is (Figure 9(a))

Fnew ¼ A
pr2m
2pD2

m
¼ Ar2m

2D2
m
: (23)

During a lunar eclipse, the sunlight reaching the
moon corresponds to a thin annulus of height hc, below
which rays passing close to the earth’s surface are bent
onto the moon (Figure 9(b)). During its passage through
the atmosphere, this light is attenuated by a factor α.
Thus, the fraction of incident sunlight that lights up the
eclipsed moon is

Feclipse ¼ a
2phcre
pr2e

¼ 2ahc
re

: (24)

We need to calculate the ratio of these two
earthlights, namely

R + Fnew

Feclipse
¼ Ar2mre

4ahD2
m
: (25)

Some of the required numbers are

re ¼ 6371 km; rm ¼ 1737 km;

Dm ¼ 384,000 km; A, 0:3:
(26)

In addition, we need hc and α.
To calculate hc, we need the angular deflection of

sunrays passing the earth at height h above the ground.
This can be calculated from Snel’s law, but it is simpler
to use the observed deviation θ0 of a ground-grazing ray
(twice the elevation of the setting sun) and assume an
exponential atmosphere with scale height H. Thus

h hð Þ ¼ h0 exp $ h
L

$ %
; L ¼ 8 km; h0 ¼ 1:18% ¼ 0:0206:

(27)

rermfrom
Sun

from
Sun

(a)

(b)

earthlight

Dm

f
Earth

Moon

h

0

c

refracted
earthlighthc

Figure 9. (a) The old moon in the new moon’s arms:
earthlight reflected onto the moon at new moon. (b) earthlight
refracted onto the moon during a lunar eclipse.
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An interesting related fact (apparently first noticed by
John Herschel) is that the focal length of the earth-lens,
determined by the distance from the earth that a grazing
ray crosses the sun–earth axis, is relatively close to the
moon:

f ¼ re
h0

¼ 309,349 km ¼ Dm $ 74,650 km: (28)

It is easy to show that this grazing ray hits the moon
after crossing the axis at the focus. Non-grazing rays do
not cross at the focus (the earth-lens has powerful spheri-
cal aberration), and hc is determined by the deflection
which hits the moon’s edge (Figure 9(b)):

hc ¼
re $ rm
Dm

) hc ¼ L log
h0Dm

re $ rm

$ %
¼ 4:28 km: (29)

The final number we need is the attenuation α. This is
the square of the attenuation of the setting sun, namely the
brightness of the setting sun relative to the unattenuated
(roughly noonday) sun. We know it is a small number
because we can gaze at the setting sun but not the noonday
sun. α is small, but it is not zero, indicating (if proof were
needed) that the earth is not flat: if it were, the sun setting
over the faraway edge of the world would be invisible.

In reality, α is enormously variable and involves both
scattering and absorption. But we can estimate it from first
principles using the following formula for the ground-level
attenuation per unit distance, resulting from scattering in
clear air [47], in terms of λ, refractive index deviation
Δ0 = n − 1 and the molecular particle density N:

c0 ¼
2
3p

2p
k

$ %4 D0
2

N
: (30)

Reasonable numbers give

k ¼ 5* 10$7 m; D0 ¼ 0:000292; N ¼ 2:5* 1025 m$3

) c0 ¼ 1:8* 10$2 km$1:

(31)

Using this to calculate the exponential attenuation of a
ray passing at height h and averaging from h = 0 to
h = hc, gives

a ¼ 1
hc

Zhc

0

dh exp $c0
ffiffiffiffiffiffiffiffiffiffiffiffi
2pLre

p
exp $ h

L

$ %$ %

¼ 6:8* 10$4 ¼ 0:0261ð Þ2: (32)

(The square root 0.0261 is an estimate – apparently rea-
sonable – of the attenuation of the setting sun: about
16 dB.)

Thus, finally we get, from (25), the ratio of earthlight
intensities:

R ¼ Ar2mre

4aD2
mL log

h0Dm
re$rm

! " , 3:4: (33)

This number should not be taken seriously as a precise
estimate. But it does indicate that the two very different
illuminations of the moon by the earth – at new moon
from the brightly lit ‘full earth’ when most of the light is
squandered into space, and during a lunar eclipse when
the thin annulus of deflected light is efficiently focused
onto the moon – are of comparable strengths. For an
interesting related discussion of the visibility of the hori-
zon at different heights, see [48].

6. The glory: focusing that vanishes geometrically

The optical glory is a halo around the shadow of an illu-
minated observer’s head cast by the sun on a cloud or
mist-bank (Figure 10). Nowadays, it is most commonly
seen while flying in sunshine, looking down at the air-
plane’s shadow on a cloud below. It took several centu-
ries for this beautiful phenomenon to be fully understood
[14,49], following its first recorded observation [4],

Figure 10. Glory around the shadow of the author’s head on
a cloud below Erice, Sicily, from light illuminating a temple in
the village above.
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because its explanation involves subtle connections
between concepts usually regarded as separate.

First, note that since the glory appears at the edge of
the observer’s shadow on a cloud, it must be a back-
scattering phenomenon associated with water droplets. It
involves reflection from individual drops and so should
not be confused with the much weaker Anderson locali-
sation, which is back-scattering enhancement arising
from the coherent interference of light multiply scattered
by many droplets [50,51].

Imagine (counterfactually as it will turn out) that
there is a light ray, incident non-axially (i.e. with finite
impact parameter x) that enters the droplet, gets reflected
once inside, and then emerges precisely backwards, i.e.
with deflection D(x) = π (Figure 11(a)). Rays near this x
will cross the symmetry axis, and associated with this
rotational symmetry would be an entire ring of such
rays, giving rise to focusing in the backward direction
[47]: an axial caustic, represented by the singularity
from 1/sin D in (4) when D = π. It follows from (1) that
such a ray exists with impact parameter x if the index n
is

D xð Þ ¼ p) n xð Þ ¼ x
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ x2
pp : (34)

As x increases from 0 to 1, n(x) decreases from 2 to √2.
But the refractive index of water, approximately 4/3, lies
outside this range, so there are no axis-crossing rays: the
glory enhancement cannot be explained as a focusing
effect within geometrical optics. (Backward ray focusing
from spheres of glass or plastic with indices in the range
√2 < n < 2, finds application in retro-reflecting paint.)

To understand the true mechanism of nature’s glory,
we note that although the rays do not reach the back-
ward direction for water, they get close. For the grazing
rays, with x = 1, the deflection is

D x ¼ 1ð Þ ¼ p$ 4 sin$1 1
n

$ %
$ p

$ %

) 180% $ 14:36% if n ¼ 4
3
: (35)

To accommodate the 14° shortfall, some of the emerging
light gets trapped into a surface wave that creeps around
the surface of the droplet, radiating tangentially while
doing so (Figure 11(b)) and reaching D = 180° and
beyond. These axis-crossing evanescent surface waves
form the backward caustic and contribute to the glory.
According to this mechanism, the back-scattered intensity
Ib, for light wavelength λ and drop radius a, is [14,49]

Ib ,
a
k

! "8=3
exp $constant

a
k

! "1=3
$ %

; (36)

in which the first factor describes axial focusing, the
exponential represents the decay as the creeping wave
skips the 14° while radiating, and the powers 1/3 come
from the fact that the surface is a caustic of the creeping
waves.

A full analysis of electromagnetic waves scattered
from transparent spheres [49,52] reveals great complexity
beyond the creeping-and-focusing picture. This includes:
waves skipping many times inside the drop before
emerging, causing high-order backward rainbows; very
fine angle- and size-dependent interference oscillations;
and delicate polarisation effects. But the exponential
angular decay is a dominant feature, described
analytically in terms of complex angular momentum: an
unexpected application to this natural phenomenon of
the Regge poles (complex angular-momentum singulari-
ties) devised to explain the quantum scattering of ele-
mentary particles.

From (36), we see that the intensity vanishes for
large droplets because the focusing enhancement is can-
celled by the evanescence (decay during the 14° skip)
and also for very small droplets, where the focusing is
softened by diffraction. That is why the glory is
observed in the small droplets occurring in clouds or
mist, but not in rain where the droplets are bigger.

axis-crossing rays form line caustic

grazing ray

surface 
waves

evanescent diffracted
rays

(a)

(b)

Figure 11. (a) Rays emerging backwards from a transparent
sphere with index n = 1.7, and crossing the symmetry axis to
form a focal line. (b) Diffracted rays creeping round the surface
of a water droplet, generating the dominant contribution to the
glory when they cross the symmetry axis.
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Summing up: the glory is a focusing effect that vanishes
in the geometrical-optics limit.

7. Hidden daylight: polarisation singularities in the
sky

A fundamental aspect of light waves is that they are
electromagnetic. Therefore, they can be polarised. But
we (unlike some other animals) possess only the most
rudimentary perception of polarisation, blinding us to a
beautiful polarisation pattern decorating the daylight sky
above us [53]. Although sunlight arrives unpolarised, the
Rayleigh (dipole) scattering from air molecules that is
responsible for the blue sky induces polarisation [3].
Scattered sunlight is strongly polarised perpendicular to
the sun (as can immediately be verified with a polarising
sheet), whereas forward and back-scattered sunlight
remains unpolarised.

If sunlight were scattered only once, daylight would
be unpolarised in the direction of the sun and in the
opposite direction, namely the anti-sun (visible before
sunrise and after sunset). But in reality, the number of
unpolarised points (directions) in the sky is not two, but
four: several degrees above and below the sun and the
anti-sun. Three were observed in the nineteenth century
and the fourth, below the anti-sun, was seen only
recently, from a balloon [54]. The reason for four is that
each single-scattering unpolarised direction is split into
two by multiple scattering.

The sky is decorated by a pattern of polarisation
directions (e.g. of the electric vector of daylight) organ-
ised by these four points, only two of which are visible

at any time. Figure 12(a) shows the pattern at a time
when the sun is in the indicated position. The key to
understanding it, discovered only relatively recently [55]
by emphasising something lacking in a tradition of elab-
orate multiple-scattering theory [56–58], is geometric:
the realisation that the unpolarised points are polarisa-
tion singularities: places where the direction of polarisa-
tion is undetermined.

Near each singularity, the geometry is that of a ‘fin-
gerprint’, around which the polarisation direction turns
by 180°. The turn is 180°, rather than 360°, because a
half-turn leaves polarisation unchanged: polarisation is
not a vector, but a direction without a sense (though, of
course, it is a consequence of the vector nature of light).
And the turn, in the same sense as each unpolarised
point is encircled, means that the singularity index is
+1/2, rather than −1/2. Since there are four unpolarised
points, the total index on the sphere of sky directions is
+2, consistent with the Poincaré–Hopf theorem [59]: any
smooth direction field on a sphere must have index +2.

The quantitative description of the pattern is provided
by representing the polarisation by a complex function
of sky direction, with zeros at the four unpolarised
points. The simplest such function is a quartic polyno-
mial and leads to the following theory [55]. The sky
direction corresponding to elevation θ and azimuth ϕ is
also represented, in stereographic projection, by a com-
plex number:

f ¼ xþ iy ¼
1$ tan 1

2 h
' (

1þ tan 1
2 h

' ( exp i/ð Þ: (37)

(a) (b)

Figure 12. Line segments: observed directions of polarised daylight in the day sky; full curves: theory (39). (a) Line segments
randomised within each cell of the measurement grid. (b) Line segments before randomisation, as originally published [55].
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In this projection of the sky onto a plane, the visible
hemisphere is represented by the unit disc whose centre
is the zenith and boundary is the horizon. For sun eleva-
tion α and splitting δ of each singularity pair, we define

ys ¼
1$ tan 1

2 a
' (

1þ tan 1
2 a

' ( ; A ¼ tan
1
4
d; ft ¼

fþ iys
1þ ifys

: (38)

Then, there is a function f(x, y) whose contours are par-
allel to the polarisation direction at the sky point (x, y),
namely

f x; yð Þ ¼ Im
Zft

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$ u2 þ A2ð Þ u2 þ A$2ð Þ

p

¼ AImF sin$1 ift
A

$ %
;A2

$ %
; (39)

in which F is the Legendre elliptic integral of the first
kind [44]. As Figure 12(a) illustrates, this theory, based
on the elliptic integral in the sky, gives a very accurate
description of the observed polarisation pattern.

Unfortunately, the picture published in the paper [55]
reporting the theory and experiment was not Figure 12(a)
but Figure 12(b), which looks rather different. In fact,
both pictures represent exactly the same data. In
Figure 12(b), the experimental line segments represent-
ing the polarisation directions are centred on the point of
the rectangular grid on which they were measured; the
eye is drawn to the grid, rather than the directions of the
line segments. A simple way to eliminate this misleading
perception (understood only after Figure 12(b) was
published) is to randomise the positions of the line
segments within each unit cell of the grid. The result is
Figure 12(a): the grid is no longer visible, and the agree-
ment between theory and experiment is much clearer.

An interesting and controversial speculation [60,61]
is that the Vikings, in their tenth-century voyages
between Norway, Iceland and what is now Canada,
might have used the sky polarisation pattern in conjunc-
tion with natural birefringent crystals (e.g. Iceland spar),
as an aid to navigation.

8. Light in crystals: Hamilton’s cone

Many natural transparent crystals are optically anisotropic
and so are obvious materials for light to exhibit its polari-
sation properties. In each direction in such a crystal, two
plane waves can travel, with orthogonal polarisations and
different refractive indices [62]. A polar plot of the
refractive indices in direction space generates the two-
sheeted ‘Fresnel wave surface’, or, as we would call it
now, the momentum-space contour surfaces of the Hamil-
tonians governing each of the two waves. In the most
general crystals, all three principal dielectric constants are
different, and, as Hamilton discovered [63,64], they

intersect at four points on two ‘optic axes’. The intersec-
tions take the form of double cones (diabolos).

There is beautiful physics associated with Hamilton’s
cones. In 1830, Hamilton himself made the first physical
prediction based on his concept of phase space: that light
incident on a thick slab of crystal along an optic axis
would spread into a cone and emerge as a hollow cylin-
der. The immediate experimental observation of ‘conical
refraction’ by his colleague Lloyd [65–67] created a sen-
sation and brought instant fame to the young Hamilton.
This story is described elsewhere [68], together with its
modern developments.

A different (and more easily reproduced) demonstra-
tion of the cone geometry is illustrated in Figure 13.
This shows the diffuse light of the sky viewed through a
‘black light sandwich’ [69]. The ‘bread’ consists of two
crossed polarising sheets, and would allow no light to
pass if there were nothing between them. But between
the sheets is the ‘filling’ of the sandwich, consisting of a
sheet of overhead projector transparency film: a material
which, though not crystalline, is biaxially anisotropic.
The simplest theory explaining the ‘conoscopic’
Figure 13 is the following.

Light passing through the transparency ‘crystal’ in
directions, close to the optic axis, specified by coordi-
nates (x, y) = r(cos ϕ, sin ϕ) and propagating along z, can
be described by a two-component vector wj i representing
the linear polarisation amplitudes along directions per-
pendicular to z. The evolution of the polarisation as the
light passes through the transparency, whose thickness is
l, is determined by a Schrödinger-lookalike equation,
written for wavenumber k,

i
k
@z wj i ¼ Ĥ wj i;

Ĥ ¼ y x
x $y

$ %
¼ r

cos/ sin/
sin/ $ cos/

$ %
0 6 z 6 l:

(40)

The Hamiltonian Ĥ describes the light in direction (x, y),
whose eigenvalues ±r describe the refractive index
diabolo, and the eigenvectors are the orthogonal
polarizations

Ĥ -j i ¼ -r -j i; þj i ¼ cos 12/
sin 1

2/

$ %
;

$j i ¼ sin 1
2/

$ cos 12/

$ %
:

(41)

Passing through the sandwich in the sequence ‘pola-
rizer-propagation-analyzer’ is formally analogous to the
sequence ‘preparation-evolution-measurement’ for quan-
tum states, and the resulting direction-dependent inten-
sity, representing the view through the sandwich, is
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I x; yð Þ ¼ analyzerh jpropagation matrix exp $iklĤ
' (

polarizerj i
&& &&2

¼ 0 1ð Þ
cos lr $ iy sin klr

r $ix sin klr
r

$ix sin klr
r cos lr þ iy sin klr

r

 !
1

0

$ %&&&&&

&&&&&

2

¼ x2sin2klr
r2

:

(42)

This clearly explains Figure 13. The sin2 factor describes
circular interference fringes as the loci of constant sepa-
ration of the sheets of the diabolo, centred on the ‘bull’s
eye’ where the two indices are degenerate. The (x/r)2

factor describes the vertical black ‘brush’, which is ulti-
mately a consequence of the half-angles in (41), accord-
ing to which the eigenpolarizations change sign (π phase
change) in a circuit of the optic axis r = 0.

I regard this π-phase change, observed in Lloyd’s
1831 conical refraction experiment, as the first geometric
phase, anticipating all of those being studied today
[70,71]. And Hamilton’s cone is the prototype of all the
conical intersections now being studied in theoretical
chemistry [72] and condensed matter physics, and popu-
larly referred to as ‘Dirac cones’ [73]. In my opinion, this
is a misnomer: Dirac never drew or even mentioned cones
in this context, and the linear dependence of eigenvalues
on momentum, leading to the Dirac equation, is exactly
the geometry that Hamilton emphasised in the1830s.

Conoscopic figures, like Figure 13, are familiar to
mineralogists. Several new intensity patterns have been
predicted [74], but not yet observed, for crystals that are
chiral and anisotropically absorbing as well as biaxially

birefringent, and with different combinations of polarizer
and analyzer.

9. The squint moon: a projection illusion

It is possible to see the sun and moon in the sky simulta-
neously at different periods of the day during each
month, provided the sky is clear. The part of the moon’s
disc that we see, waxing from crescent to half to gibbous
as the moon’s phase changes from new to full, corre-
sponds to our view of the hemisphere that is lit by the
sun (Figure 14(a)). Therefore, we might expect the
normal to the lit face (i.e. the normal to the line joining
the horns of the moon) to point towards the sun. But it
does not: the lit face points above the sun, to an extent
that increases between new moon and full moon. This is
the unexpected and striking ‘squint moon’ phenomenon
[75–77]. Its explanation is a combination of geometry
and perception.

It is obvious that in three-dimensional space, the nor-
mal to the lit hemisphere points directly to the sun.
Therefore, the squint must be an illusion. It has alterna-
tively been called the New Moon Illusion [78], to distin-
guish it from the unrelated more familiar moon illusion
in which the moon appears large near the horizon. The
squint illusion can be immediately dispelled [3] by
stretching a string taut close to the eye and orienting it
from the moon to the sun.

To understand the illusion, we first note that the sun
and moon are too distant for our stereoscopic vision to

Figure 13. Bull’s eye in the sky above Bristol, photographed through a black light sandwich: biaxially anisotropic overhead-trans-
parency foil between crossed polarizers.
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operate, so we cannot perceive their arrangement in
three-dimensional space. We cannot see distances; all we
can perceive are directions. Each direction can be
regarded as a point on an earth- (or eye-) centred unit
sphere. On this sphere, the straight line in space joining
the sun and moon projects onto a great circle: a geodesic
curve. But we do not perceive this sphere directly.
Instead, we see objects in the sky, and relations between
them, as though projected onto an imaginary screen,
roughly flat. Call this ‘skyspace’. The squint moon illu-
sion is related to the projection from the direction sphere
onto skyspace.

I do not know which projection our visual system
chooses, or even if it is the same at different times and
for different people. But the illusion is remarkably stable
against the change from one projection to another. To
illustrate this, Figure 14(b) shows the stereoscopic pro-
jection of skyspace according to (37), mimicking how
we might see the sky when lying on our back looking
up. The squint is very clear: the geodesic connecting the
moon and sun on the direction sphere projects onto a cir-
cular arc in skyspace, whose tangent at the position of
the moon points in a different direction to the straight
‘gaze path’ from the moon to the sun in skyspace.

Zenith-centred stereographic projection is particularly
interesting because on this skyspace the horizon is
curved; yet the squint is strong, apparently contradicting
claims [75] that the illusion depends on seeing the hori-
zon as straight. It would be interesting to see if the
squint persists in space far above the earth, where there
is no horizon.

In most skyspaces, geodesics on the direction sphere
appear projected as curves; stereographic projection is
just one example. But Professor Zeev Vager (personal
communication) points out an important class of projec-
tions for which great circles on the sphere appear as
straight lines, namely the perspective (‘pinhole’) projec-
tions. For these skyspaces, the squint arises because per-
spective does not preserve angles: it is not conformal. In
particular, the angle in skyspace, between the horns of
the moon and the (now straight) line from the sun to the
moon, is not 90°.

10. Concluding remarks: the sky as an optics
laboratory

It should be clear from my eclectic series of examples
that natural optical phenomena illustrate, and have been
implicated in the development of, a surprisingly large
number of scientific concepts:

. Caustics – the singularities of geometrical optics –
are central to understanding rainbows, mirages,
and the sparkling of light on water.

. Numerical experiments played a central part in
understanding both the ray and wave aspects of
rainbows. Replacing numerical experiments by
analysis led to a seminal insight into

. Mathematical asymptotics, still being developed
now, with new classes of applications.

. Dispersion explains the green flash, as well as the
rainbow colours in geometrical optics.

. Complex angular momentum, in the form of

. Regge poles, supplied the key to understanding the
glory. Several numerical

. Coincidences underlie the comparable brightnesses
of the two earthlights on the moon (less familiar
than the coincidentally similar angular sizes of the
sun and moon, responsible for the spectacle of the
solar eclipse).

. The blue day sky and natural crystals exhibit the
Polarisation singularities being intensively
explored as one of the pillars of singular optics.

. Geometric phases and

. Conical intersections first appeared in crystal
optics. And the squint moon exemplifies the

. Geometry of visual illusions that mislead our per-
ception.

moon to sun

direction
sphere

(a)

(b)

geodesic path

gaze pathsquint angle

zenith-centred stereographic
skyspace

horizon

moon

sun

Figure 14. (a) Moon–sun geometry in space and on the direc-
tion sphere. (b) Simulation of the squint moon as seen in ‘sky-
space’, modelled by zenith-centred stereographic projection
from the direction sphere.
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