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A Theory of the Anti-Coronae
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The anti-coronae, or luminous rings around the anti-solar point, are explained as a peculiar
diffraction phenomenon in small water drops. The optical and the electromagnetic theories give
results in agreement with each other and with the observations. The most important features
are those which relate to the polarization.

THE diffraction coronae, or colored rings,
T which surround the sun or moon, when
covered by a thin veil of cloud, are well known.
A similar phenomenon can occasionally be ob-
served in the opposite direction. A person stand-
ing on a high point observes his shadow pro-
jected on low clouds or on a layer of mist. He
observes a gradual increase of the intensity of
reflected light towards the shadow's head and,
if conditions are favorable, some colored rings
appear around the head. We shall call this phe-
nomenon the anti-corona.1 It is often seen in the
mist on mountain tops and occasionally in
lower country, when the sun is near the horizon.
An air-pilot related that he saw the anti-corona
around the shadow of his plane on the clouds
nearly every day. According to the position of
the observer, the center of the rings shifts from
the shadow of the head of the plane to the
shadow of its tail. Once or twice the anti-corona
has been studied in laboratory experiments.

A satisfactory explanation has not so far been
available. The old explanation by which the
anti-corona is ascribed to common diffraction of
light somehow reflected around the foremost
drops of the cloud, does not appear to be sound.
The more recent view is that these peculiar
fluctuations in the intensity of nearly backward
scattered light are already present in the scatter-
ing diagram of one single drop. Thus far, how-
ever, a more specific theory explaining the
differences between the common coronae and
the anti-coronae, has not been given.

For a general investigation of the scattering
of light by spherical particles, we refer to a

* Now at the Yerlees Observatory, University of Chicago,
Williams Bay, Wisconsin.

1 The frequent use of the common term "glory" (cf.
Webster) was considered unsuitable in an article of this
kind.

former publication,2 which gives an extensive
treatment of dielectrical and absorbing particles
on the basis of Mie's electromagnetical theory.
Data from other authors are compiled, various
limiting cases are discussed and numerical results
are given. The present problem deals with the
limiting case of very large particles, where the
scattering approaches the classical theories of
geometrical optics and of optical interference.
We shall first derive the results from the optical
theory and then from the rigorous electromag-
netical formulae.

OPTICAL THEORY

The intensity of light scattered by a sphere
which is large in comparison with the wave-
length can be computed by means of the laws of
geometrical optics. The additional scattering by
diffraction around the sphere is irrelevant for
the present subject. The resulting formula is
(T. 5, 14)

(1)

Here I is the emergent flux per unit solid angle,
divided by the incident flux on the whole
sphere; 0 is the angle between the scattered and
proceeding rays; finally the subscripts 1, 2 refer
to the components the electric vectors of which
are perpendicular and parallel, respectively, to
the plane through the incident and scattered
rays.

The intensities given by Eq. (1) consist of
sums that have to be extended over all different
light paths along which rays can be reflected, or
refracted, into the direction 0. One light path
can be specified by the parameters r and 

2 H. C. van de Hulst, "Optics of spherical particles,"
Thesis Utrecht, 1946; also published in Rech. Astr. de
l'Observatoire d'Utrecht, 11, Part I. Formulae from this
work will be quoted as (T. 5, 14) etc.
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A THEORY OF ANTI-CORONAE

which are, respectively, the angle between the
incident ray and the surface of the sphere, and
the number of internal reflections added to 1.
The case p=0 means external reflection. For a
given light path, 1E1 2 (T. 5, 13) denotes the de-
crease of the amplitude caused by the partial
reflection and refraction on account of Fresnel's
theory. Furthermore al2 accounts for the de-
crease in intensity caused by the geometrical
divergence of the rays; the value of a is
(T. 5, 15):

sin r cos r d'r
al = _ .. d (2)

sin 0 dO

It has been observed long ago that the in-
tensity given by (1) and (2) would become 
for a light path for which

dO/d, = 0. (3)

This condition defines the rainbows. The two
main rainbows lie near:

_ p=2,
P=3,

r= 31l, 0=138°, 7r-0=4 2 0;
= 18, 0=129°, 7r-0=510.

A strict infinity does not occur if interference is

taken into account. The rays defined by (3) and
the adjacent rays with equal p but with slightly
different T form a cubic wave front and a
classical calculations yields the correct intensity
curve for the rainbows and supernumerary bows.

A second case in which the expression (2)
diverges occurs when

sin 0=0, while sin 2 T0. (4)

No attention has been paid to this case, though
it is quite similar to the case of the rainbow.
Again, the divergence can be removed by taking

,/into account the interference with the adjacent
rays-; a determinate intensity distribution will
then result.

Condition (4) implies the cases 0 = 0 and
0= 7r. All peculiarities in the intensity distribu-
tion near 0 = 0 are blended by the much stronger
-coronae caused by the diffraction of light around
the sphere. Near 0=7r, however, a peculiar phe-
nomenon may be expected. Indeed, as we shall
see, the observed. anti-coronae are explained in
this way.

'Airy's theory. See any textbook on meteorological
optics.

I c

FIG. 1. Origin of toroi-
dal wave front.

Figure 1 shows the simplest case of a light ray,
abcde, satisfying the conditions required. Two
adjacent rays, which emerge under' slightly
different angles, are also drawn. The linear
front of the incident plane wave transforms into
the circular front of the emergent wave, which
has a virtual focus at F. However, still other
rays must be taken into account. The whole
figure must be rotated around the axis cs, and
all the outgoing rays, thus defined, will interfere
with each other. They define a toroidal wave front
which seems to emerge from the focal circle
described by F. We now have to calculate by
means of Huygens' principle the interference
pattern corresponding to this particular wave
front.

The most interesting feature of the present
problem is that the two directions of polariza-
tion cannot be treated separately. Let the in-
cident wave be plane polarized with its electrical
vector vibrating in the plane of Fig. 1. Then,
for the rays drawn, it possesses a parallel vibra-
tion and emerges with an amplitude containing
the factor 2. In the perpendicular plane, how-
ever, the same wave appears as a perpendicularly
vibrating wave so that it is transmitted with an
amplitude proportional to e. Both transmitted
waves are still vibrating in equal directions and
are capable of interference. It is thus seen that
the interference of rays in different azimuthal
planes simulates an interference of rays with
different directions of polarization.

Figure 2 explains the symbols we shall use in
our analysis. The circle represents the focal
circle from which the toroidal wave seems to
emerge; let its radius be r'. We will compute
the intensity radiated in a direction which makes
a small angle -y with the axis and the projection
of which on the plane of Fig. 2 is directed toward
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_ _- '4.+- __ - FIG. 2. Decomposition
e l of light vectors.

the right, as shown by the arrow e. The con-
sistent notations for the components of the light
vector A of the emergent wave which vibrate
parallel to and perpendicularly to the plane
through the axis and e, are A 2 and A , re-
spectively.

Let the incident light first be linearly polar-
ized in a direction a making an angle I with the

fixed direction mentioned. The light emerging
from an arbitrary point of the focal circle, as
specified by the angle o, consists of two com-
-ponents which in the incident beam have the
amplitudes cos ( - sp) in the outward radial
direction and sin (- V) in the counterclockwise
tangential direction. The amplitudes with which
these components emerge are:

radial: C2 COS ('- p)
tangential: C sin ( - ) (5)

where the constants C and C2 are proportional
to 1 and 2, respectively. To derive the ampli-
tude vectors of the total emergent light wave,
we must decompose the vector (5) into com-
ponents with directions parallel to A and A 2.
These are:

a,(Sp) = (C1 COS2 p+ C2 sin2
S) sin -(C 1 -C 2 ) sin os socos ,

a2(yP) = (Cl-C 2 ) sin socos so sin 6- (C sin2 +C 2 cos 2 s) cos . (6)

Writing r' sin y =r' =u, we now find the total amplitudes of the emergent light to be

1 2r

Al 2 =-J e-u cOs 'Pal, 2(y,)d sc (7
2 Jo

The definite integrals needed to reduce this expression,

1 2r
-Jo e-iu cos cos2 pd = {Jo(u)-J 2 (U)},
2r 2

1 2r
- e-iu cos A sin 2 pd ={O(U) +J 2 (U),
27r

-~ f exiu Cos v sin o cos sod'p = 0,
2r o

are related to Sommerfeld's integral defining the Bessel functions.
Incident natural light can be considered as a superposition of non-coherent linearly polarized

waves with randomly distributed directions of vibration. Averaging, therefore, the intensities in
respect to A', we find a factor (sin2 Vt)AV =(cos2' )A,= both in A and in A 22. With omission of the
factor , the final intensities are:

Il = [C { J(U) - J2(u)I +C2 IJO(U)±J 2 (U) }]
2

'2= [C2{J(u) - J 2(u)I +CJo(U)+J 2(U) }2
(8)

and in both directions of polarization together:

I= 2(C1 ± C2)2 Jo2(u) +2(C1 - C2)2j 2
2(U).

These formulae show the full implications of the interference effect described. If no interference
between rays in different azimuthal planes took place, the intensities 11,2 would contain only the
coefficients C1, 2 with the same index. This is the case for the rainbow; it holds also for large angles in
the present theory: with increasing distance from the center of the interference pattern the factor
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Jo(u) +J2 (u) decreases rapidly, like u1 , leaving

Jo(u) - J2(u) = (8/iru) i cos (u - .r/4)

with the same index coefficient as the predominant term.4 For small u, however, the terms of (8)

are of the same order of magnitude; this region will be discussed in the last section.

ELECTROMAGNETICAL THEORY

The general expression for the intensity distribution of light scattered by a homogeneous sphere

was first derived by Mie in 1908.5 The resulting formulae in a somewhat changed notation

(T. 2, 12) are:
1

7rI1,2(0)=-I 1,21 2, (9)
2x2

where
co 2n+1

l{a rn(v)+bnrn(v)},
n=ln(n+1) (10)

Xo 2n+1
Ei 2= E {b narn(v)+anrn(V)}.

n= n(n+ 1)

By x we denote the ratio 27rr/X, the circumference of the sphere in terms of the wave-length. The

coefficients an and bn refer to the electric and magnetic 28-poles, respectively; they are complex

functions (T. 2, 7) of x and of the refractive index, m. Finally, the formula contains the spherical

harmonics (T. 2, 10):
1 d

7rn(v)= Pn1 (v) and rn(v)=-Pn(v),
sin 0 dO

where v = cos 0.
Anti-coronae in visible light are observed on clouds consisting of drops with diameters of the

order of 25,4, which corresponds to a value for x of about 150. For such a large value of x the evalua-

tion of expressions (9) is impracticable so that we have to use their a symptotic forms. We denote

the small angle ir -0 by y. The spherical harmonics have then the asymptotic forms (T. 5, 5):

n(n+ 1)
rn(v) = (-1) n1 {J(z) +J 2 (Z) 1,

2
(11)

n(n+ 1)
Tn.(V) = (1 2 JO(Z) -J2(Z) },

2

where we have written z = ny.

As was stated by Debye, the terms of (10) are of comparable size up to n =x and decrease rapidly

as soon as n exceeds x. Most of these complex terms will nearly cancel each other. Only when the

terms of the order
N-3, N-2, N-1, N, N+1, N+2, N+3,

have nearly equal phases, does an appreciable total amplitude result. In particular, the amplitudes

of the nearly backward scattered light will be determined by the terms near the order N for which

the sums
C1= Ad (2n +1)(-1)nbn, C2 Z= n (2n+1)(-1) lan, (12)

consist of terms with stationary phases. Neglecting the effect of the further terms, we find from

4 By comparing this asymptotic behavior of (8) with Eq. (1) the relative coefficients may be expressed in absolute units.
5 G. Mie, Ann. d. Physik 25, 377 (1908).
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(10) and (11) the total amplitudes

El= c 2{[Jo(u)+J 2 (u)} +2c{Jo(u)-J 2 (u) },
-Z 2 = 2CI{Jo(u) +J2 (u)} +!Lc2{Jo(u)-J 2 (u)},

where it is written for Ny. These formulae, when
substituted into (9), agree with the optically
derived formula (8). Only the values of c, 2 and
N have still to be calculated.

Before we proceed, attention may be drawn
to the following point. In Debye's asymptotic
formulae (T. 5, 8) the coefficients a. and b refer
to one direction of polarization. Yet they appear
simultaneously in the amplitudes for each direc-
tion of polarization. This apparent paradox can
now be completely explained. In the asymptotic
form the term with the different index drops
out for most directions because 7rn(v) has a
smaller order of magnitude than r.(v). Only
near the forward or backward directions the
mixture of both terms remains and can be fully
explained on the basis of Huygens' principle, as
was shown in the preceding section.

The final step consists of the determination of
N, c, and 2 from (12). We may evaluate them
either analytically or numerically.

a. By the analytical procedure we can formally
demonstrate the complete equivalence of the
optically and electromagnetically derived for-
mulae for drops which are very large in com-
parison with the wave-length. Similar proofs
have been given for the special case of the
rainbow 6 and for the general case7 in which
expression (2) has no discontinuity. The modifi-
cation for the present special case would present
no difficulties. In each of the three cases we
start by replacing the coefficients a and b by
their asymptotic forms for very large order,
according to Debye. Different expressions are
needed for n<x and for n>x, as can be visual-
ized by means of the "localization principle,"
which assigns the terms of the order n to rays
passing the center at a distance n/27r. Terms
with n>x correspond to rays passing along the
sphere and give a vanishing contribution. Terms
with n<x correspond to rays hitting the sur-

6 Balth. van der Pol and H. Bremmer, Phil. ag. 24, 141
and 825 (1937). Further articles on an analogous problem,
ibid. 25, 817 and 27, 261.

7 The outline given here follows the treatment by H. C.
van de Hulst, reference 2, Chapter V.

face under an angle =arc cos (n/x). Further,
the asymptotic form for each term can be
decomposed into subterms corresponding to dif-
ferent numbers of internal reflections, each of
them with the proper coefficients el, or 2. It
appears that b refers to the perpendicularly
vibrating wave (index 1) and a refers to the
parallel wave (index 2). Finally, the subterms
have a stationary phase for the order N which
corresponds exactly with the location of the
classical light paths. The sum of the terms of
orders near N can be approximated by a Fresnel
integral or, in the case of the rainbow, by an
Airy integral. The resulting intensities, polar-
izations and phases agree with the optically
derived results. For the anti-corona we would
conclude that NX/2?r is equal to the radius r' of
the focal circle and that c and 2 are, like Cl
and C2, proportional to el and e2.

b. The analytical derivation of N, cl, and 2 of
which we gave an outline holds for the general
case defined by Eqs. (4). However, our assump-
tion that the actual anti-coronae are caused by
light rays satisfying these conditions is not
correct: a light path as illustrated in Fig. 1
does not exist for a waterdrop. When we pass
from central rays to edge rays the deviation y of
the ray with a single internal reflection increases
from 0 to 42° (rainbow) and decreases again to
the final value of 14°. The value y = 0 is not
again reached. This would seem to invalidate our
explanation. On the other hand, it must be
pointed out that centrally incident rays, though
they give y = 0, give a- perfectly smooth intensity
distribution since the discontinuity of expression
(2) is removed by the fact that also cos r=0 8
Further, a rough computation shows that the
more complicated light paths give rise to anti-
coronae that are too weak to be observed, just
as is the case for rainbows caused by more than
two internal reflections.

The following simple solution is suggested as
the most probable: though x can be as large as

8 The explanation by B. Ray, Proc. Ind. Ass. for the
Cultivation of Science 8 (1923), is not correct, for this
reason.

(13)
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200, the actual drops are still small enough to
give strong deviations from the results for the
optical case, x- oo. The following considerations
tend to support this explanation. A light path as
shown by Fig. 1 exists for refractive indices
between 2 and v2. The angles of incidence
required are given in Table I. It'is obvious that
m = 1.33 just fails to satisfy the conditions, if the
optical theory is to be rigorously valid. For a
finite value of x, however, the change at m = 1.41
will not be so abrupt. From the values of cos r,
which is equial to N/x, we see that the anti-
corona is caused by rays near the edge of the
droplet. We therefore infer that also for m = 1.33
the radius of the focal ring is nearly equal to the
radius of the droplet.

Furthermore, we know that Debye's semi-
convergent formulae for the cylindric functions,
on which the proof of the equivalence between
the optical and the electromagnetical results was
based, are not valid for n near x. E.g., for x= 150
they are useless for the terms ranging from
about n =144 to 156.9 This makes the optical
theory for the anti-coronae completely unreliable
for spheres with x=150 and m=1.6 to 1.41.
Consequently, it is probable that drops of this
size and of refractive index 1.33 still give a
strong anti-corona.

The values of c and c2 cannot now be derived
from the analytical theory. Instead, we should
compute the values of a and b from their
rigorous definitions and add the sums (12)
numerically. The optical considerations only pre-
dict a stationary phase of the terms near n x.
We have not made such a computation and,
accordingly, we cannot give a theoretical pre-
diction about the ratio of c1 to c2.

TABLE I. Rays that would give rise to anti-coronae if the
refractive index were m.

m T COS-

2.0 900 0
1.9 540 0.59
1.8 38° 0.78
1.7 260 0.90
1.6 160 0.96
1.5 70 0.99
1.41 00 1.00
1.33 - -

See Jahnke-Emde, Tables of Functions (B. G. Teubner,
Leipzig, 1933 edition), especially Fig. 105.

2
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FIG. 3. Intensity distribution of the anti-coronae in both
directions of polarization, in case C1=0.

COMPARISON WITH THE OBSERVATIONS

For any given ratio of C to C2 the relative
intensities in both directions of polarization can
be readily evaluated from (8). The results for a
few cases are:

1. C = C2. The anti-corona is wholly unpolar-
ized. The central field is very luminous and dark
rings appear at u = 2.5, 5.6, 8.7, 11.8, - -.

2. C1 - C2. The anti-corona is again un-
polarized. The anti-solar point is dark and is
surrounded by a luminous ring at u=3.1. Dark
rings are situated at u=5.2, 8.5, 11.6, - -.

3. C-=0. The intensities for this case are
shown by Fig. 3. In the central field the "alien"
polarization, index 1, is slightly preponderant
except at the anti-solar point itself. At u = 2.3 we
find a fairly dark ring in which the polarization
changes its sign. The bright ring at u=3.5 and
all further rings are nearly completely polarized
in the "proper" direction, index 2. They are
separated by dark rings at u=5.4, 8.6, 11.7, - -.

We shall now compare these predictions with
the available observations. Data concerning anti-
coronae on natural clouds have been collected by
Pernter-Exner.10 Measurements on artificial mist,
together with qualitative observations of the
polarization, have been published by Mierdel.' 1

These data, though not obtained with modern
observational technique, suffice to give some
checks on the theory and a preliminary determi-
nation of C1/C2 .

The anti-coronae show distinct differences from
common coronae, all of which can be explained on
the basis of the present theory. (a) One feature is

10 Pernter-Exner, Meteorologische Optik (W. Braumfiller,
Wien, 1910), p. 413 ff.

11 F. Mierdel, Beitrage z. Physik d. freien Atmosphare 8,
95 (1919).
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TABLE II. Ratios of the radii of the dark rings.

Observer Light Cloud el'Y1/2 'Y3/Y2

white artificial 0.34 -40.05 1.66 40.03
Mierdel red artificial - 1.68 40.04

photographic artificial - 1.59

Average of
several ob-
servations white natural 0.46 40.05 1.67 40.06

Wegener photographic natural 0.41 (1.74)

Tleory Ci =0 0.43 1.60eory Ci/C 2 = -0.25 0.35 1.61

their variability. It is obvious that the inter-
ference of rays which are refracted by opposite
sides of a waterdrop will be much more sensitive
to slight deformations of the droplets than are
the rainbows in which only adjacent rays inter-
fere, or the common coronae in which non-
refracted rays interfere. (b) The outer rings of
anti-coronae are much more pronounced than
are the outer rings of common coronae. On one
occasion as much as 5 minima could be observed.
The explanation is that the intensity in the
anti-coronae decreases proportionally to
whereas common coronae follow a 0-2 -law. (c) A
final striking feature is the haziness of the first
dark ring (which for normal sunlight is observed

o as the first red ring). Mierdel even calls it a
slight depression separating the inner and outer
parts of the central field. This haziness can be
understood if the intensity distribution of Fig. 3,
is approximately correct. A further increase of
the first bright ring is obtained if we approach
case 2, where C, and C2 have opposite signs.
Estimating from Mierdel's description that

brightness of first ring
0.30 < -< 0.80,

brightness of central field

we find the value of either C2 /C1 or C/C 2 to
lie between 0 and -0.25.

Further information is obtained from Mierdel's
observations of the polarization. From the fact
that the picture rotates with the analyzing nicol
we infer circular symmetry to exist so that the
glass plates in Mierdel's experiment cannot have
had a serious effect. The complementary colors
of the central field and the rings indicate different
planes of polarization, in agreement with Fig. 3.
The preponderant polarization in all bright rings
is the one in which the electric vector vibrates

in the radial direction. This shows that C2 > C1,
disregarding signs. Still, the tangential com-
ponent is also visible. Estimating its intensity to
exceed 4 percent of the total intensity of the
rings, we find C 2 /C22>0.04. Together with the
former data this indicates that C/C 2 must be
about - or - . This estimate is based on
laboratory data; no observations of the polariza-
tion of natural anti-coronae seem to have been
published. 2

Finally we use the radii of the rings. As is
true forcommon coronae, the radii of the rings
are inversely proportional to the sizes of the
droplets. However, it was noticed long ago that
the rings of anti-coronae do not give consistent
sizes when interpreted with the older theory.
Let us denote the radii of the dark rings by
71, 72, 73, etc. For C, = 0, the present theory gives

71:72:73:Y4=2.3:5.4:8.6: 11.7
=0.43:1.00:1.60: 2.17.

For other values of C,/C2 the ratios are not very
different. Table II shows the observed and com-
puted ratios.

The agreement between theory and observa-
tions is as good as can be expected. No correction
has been applied for the size of the sun and it
was assumed that the edges of the red rings,
which were measured by the observers, indicate
the positions of the dark rings in the mono-
chromatic picture for yellow light.' 3 This intro-
duces a considerable uncertainty but the ratio
02/01=1.80, valid for the common diffraction
coronae, differs strongly enough from the tabu-
lated values to indicate again that this theory
does not apply to the anti-corona.

On the basis of the present theory, measure-
ments of the various dark rings give consistent
sizes for the droplets. From the average diam-
eters, which are about 2yl 10 30', 272 = 30 50',
273= 60 30', we find 0.027 mm for the average
diameter of the water drops in the clouds on
which anti-coronae have been observed.

12 Dr. 0. Struve has related to me that he observed an
anti-corona through a nicol prism on a transatlantic flight,
Sept. 15, 1946. It was strongly polarized and the dark and
bright features rotated when the nicol was rotated. No
radii or intensities were however estimated.

13 Early experiments by Fraunhofer indicated that this
rule was correct for the first three rings of common coronae.
The "wave-length of white light" is 0.57A. See Pernter-
Exner, p. 460.
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